Repaso de Relaciones

Ejercicio 1:

Sean $A = \{a, b\}$, $B = \{1, 2\}$ y $X = \{a\}$, y sean R y $S \subseteq A \times B$, tal que $R = \{(a, 2), (b, 1)\}$ y $S = \{(a, 1), (a, 2)\}$ se pide:

a) Determinar por extensión $R \cup S$, $R \cap S$, R - S, $\overline{R \cap S}$, $\overline{R \cup S}$, $R \mid_X y \mid_X$.

Ejercicio 2:

Sea $A = \{-1, 0, 1\}$ y considerando las siguientes relaciones definidas sobre A

$$R_{1} \subseteq A \times A, R_{1} = \{(x, y)/(x, y) \in A \times A \land x = y\}$$

$$R_{2} \subseteq A \times A, R_{2} = \{(x, y)/(x, y) \in A \times A \land x + y = 2\}$$

$$R_{3} \subseteq A \times A, R_{3} = \{(x, y)/(x, y) \in A \times A \land y = x^{2} + 1\}$$

$$R_{4} \subseteq A \times A, R_{4} = \{(x, y)/(x, y) \in A \times A \land x^{2} + y^{2} = 1\}$$

- a) Determinar por extensión R_i , $i = 1 \dots 4$
- **b**) Determinar por extensión R_3^{-1} , $\overline{R_4}$, $\overline{R_2 \cup R_3}$.

Ejercicio 3:

$$\begin{aligned} &\text{Sea }X = \{a,b,c,d,e\} \text{ y sean } Q,R \text{ y } S \subseteq X \times X, \text{ tal que:} \\ &Q = \{(a,e),(d,a),(d,e)\} \qquad R = \{(a,b),(a,c),(a,d),(b,d)\} \qquad S = \{(a,b),(a,d),(c,e),(e,d)\} \end{aligned}$$

$$\text{Obtener } R \cup Q, R \cap S, Q \circ S, R \triangle S \text{ y } Q \cap S. \text{ i.Está } S \subseteq R^{-1} \cup Q?$$

Ejercicio 4:

Dados $A = \{a, b\}$ y $B = \{1, 2\}$, definir por extensión $\mathcal{P}(A \times B)$, luego tomar cada uno de los elementos del conjunto \mathcal{P} como una relación R_i definida de A en B y analizar qué propiedades cumple la misma.

Ejercicio 5:

Sea el conjunto A y las relaciones definidas sobre él Id y R tal que $R \subseteq A \times A$ y $Id = \{(x,y)/(x,y) \in A \times A \}$ $A \times A \wedge x = y$ }, se pide demostrar que $R \circ Id = R$.

Ejercicio 6:

Sean S y R relaciones definidas sobre $A \times B$ (R y $S \subseteq A \times B$). Demostrar que:

- 1. $R \subseteq S \Leftrightarrow R^{-1} \subseteq S^{-1}$
- 2. $(R \cap S)^{-1} = R^{-1} \cap S^{-1}$
- 3. $R \subseteq S \Leftrightarrow \overline{S} \subseteq \overline{R}$

Ejercicio 7:

Dado $X = \{a, b\}$ tomar cada elemento de $\mathcal{P}(X \times X)$ como una relación $R_i \subseteq X \times X$ y analizar para cada una de ellas qué propiedades cumple.

Ejercicio 8:

Dado $A = \{a, b, c, d, e\}$, mostrar cuatro ejemplos de relaciones, por comprensión o por extensión, $R_i \subseteq A \times A$ tales que: dos sean órdenes totales y dos sean órdenes parciales. Justifique su respuesta demostrando que cada una cumple las propiedades en cada caso.

Ejercicio 9:

Dar un ejemplo de una relación que sea un Pre-orden, pero no relación de Orden, ni Orden Total y tampoco de Equivalencia.

Ejercicio 10:

Demostrar que la relación "

" entre conjuntos es un orden parcial.

Ejercicio 11:

Dado el conjunto X y el conjunto $S \subseteq X$, y sea E_S una relación definida sobre $\mathcal{P}(X)$ tal que $E_S = \{(A, B) : A \in \mathcal{P}(X), B \in \mathcal{P}(X) \text{ y } A \triangle B \subseteq S\}$

Demuestre que E_S es una relación de equivalencia.

Ejercicio 12:

Dadas las siguientes relaciones analizar por qué no son relaciones de equivalencia expresando claramente su justificación:

- 1. $\{(x,y)/ \text{ "} x \text{ es padre de } y \text{"} \}$
- 2. $\{(x,y)/$ "x vive cerca de y" $\}$
- 3. $\{(x,y)/$ "x e y son rectas con un punto o más en común" $\}$

Ejercicio 13:

Sea R una relación sobre X, tal que: a) Dom(R) = X y b) R es simétrica y transitiva.

Muestre que R es una relación de equivalencia

Ejercicio 14:

Sea $f:X\to Y$ una función sobreyectiva, con X un conjunto no vacío. Si se define la relación E_f sobre X tal que:

$$a E_f b$$
 si sólo si $f(a) = f(b)$

Muestre que E_f es una relación de equivalencia.

Ejercicio 15:

Sea R una relación sobre \mathbb{R} tal que:

$$r R s$$
 si sólo si $r - s \in \mathbb{Z}$

Demostrar que es una relación de equivalencia.

Ejercicio 16:

Dadas las siguientes definiciones:

Demostrar que:

- 1. R es transitiva y reflexiva $\Rightarrow R^2 = R$.
- 2. R es un orden parcial $\Rightarrow R^{-1}$ es un orden parcial.
- 3. R es un orden parcial $\Rightarrow R^2$ es un orden parcial.
- 4. $R^2 \subseteq R \Rightarrow R$ es transitiva.

Ejercicio 17:

¿Es la unión de funciones una función? ¿Es la intersección de funciones una función? Si su respuesta es afirmativa demuéstrelo, caso contrario dé un contraejemplo.

Ejercicio 18:

Dada la función f definida de \mathbb{N} en \mathbb{N} ,

$$f(x) = \begin{cases} 10 & \text{si } x = 1\\ x - 1 & \text{si } x \ge 2 \end{cases}$$

¿Es inyectiva? ¿Es sobreyectiva? Justifique.

Ejercicio 19

Demostrar el siguiente teorema:

Sea f una función total de A en B, $f: A \longmapsto B$:

- a) $|Ran(f)| \le |A|$
- b) Si f es inyectiva entonces $\mid A \mid \leq \mid B \mid$
- c) Si f es sobreyectiva entonces $\mid B \mid \ \leq \ \mid A \mid$
- d) Si f es biyectiva entonces $\mid A \mid = \mid B \mid$
- e) Si $\mid A \mid = \mid B \mid$ entonces f es sobreyectiva si y sólo si f es inyectiva.

Ejercicios Adicionales

Ejercicio 1:

Dados los siguientes conjuntos:

 $D = \{x / \text{ "}x \text{ es un departamento en una empresa"}\}\ P = \{x / \text{ "}x \text{ es un empleado de una empresa"}\}$ y las siguientes relaciones:

```
R_1 \subseteq P \times D, R_1 = \{(x,y)/ \text{ "$x$ es el jefe del departamento $y$"}\} R_2 \subseteq P \times P, R_3 \subseteq D \times P, R_3 = \{(x,y)/ \text{ "$x$ manda a $y$"}\} R_3 = \{(x,y)/ \text{ "en el departamento $x$ trabaja el empleado $y$"}\}
```

Se pide para cada una de las relaciones planteadas analizar qué propiedades cumple y además decir cómo podría obtenerse R_3 a partir de R_1 y R_2 . Agregar todos los supuestos que considere necesarios para analizar las relaciones planteadas.

Ejercicio 2:

Sea S y R relaciones definidas sobre $\mathbb R$ donde S es la relación "<" y R es la relación ">". Describa las siguientes relaciones:

1. $R \cap S$ 2. $R \cup S$ 3. S^{-1} 4. $\overline{R \cup S}$

Ejercicio 3:

Determinar si cada una de las siguientes relaciones es función, total, sobreyectiva, inyectiva, reflexiva, simétrica, transitiva, antirreflexiva, antisimétrica o débilmente antisimétrica. Clasificar, si es posible, cada una de las relaciones por las propiedades que cumple.

- 1. $\{(x,y)/$ "x es hermano de y" $\}$ (sobre el conjunto de los hombres)
- 2. $\{(x,y)/$ "x tiene la misma fecha de cumpleaños que y" $\}$ (sobre el conjunto de las personas)
- 3. $\{(x,y)/$ "x es múltiplo de y" $\}$ (sobre \mathbb{Z}^+)

Ejercicio 4:

¿Cuál es el error en la siguiente "demostración" que dice que la propiedad reflexiva se obtiene desde las propiedades simétrica y transitiva?

Asumiendo que R es simétrica y transitiva. Entonces $(x,y) \in R \Leftrightarrow (y,x) \in R$ por simetría. Dado que $(x,y) \in R$ y que $(y,x) \in R$, entonces por transitividad tenemos que $(x,x) \in R$. Por lo tanto, R es reflexiva.

Ejercicio 5:

Dada una relación R ternaria sobre X ($R \subseteq X \times X \times X$) haga una propuesta de extensión de la propiedad de ser Reflexiva y de ser Simétrica.

Ejercicio 6:

Sea la relación de E_S definida en el **Ejercicio 11** del práctico se pide analizar:

a)Para $S, T \subseteq X$ ¿cómo se comparan los conjuntos $E_S \cap E_T$ y $E_{S \cap T}$?

b)Para $S, T \subseteq X$ ¿cómo se comparan los conjuntos $E_S \cup E_T$ y $E_{S \cup T}$?

c) Para $S,T\subseteq X$ ¿cómo se comparan los conjuntos $E_S\Delta E_T$ y $E_{S\Delta T}$?

Ejercicio 7:

Sea $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ y sean:

$$A_1 = \{1, 2, 3, 4\}$$

 $A_4 = \{4, 8, 10\}$

$$A_2 = \{5, 6, 7\}$$

 $A_2 = \{8, 0, 10\}$

$$A_2 = \{5, 6, 7\}$$
 $A_3 = \{4, 5, 7, 9\}$
 $A_5 = \{8, 9, 10\}$ $A_6 = \{1, 2, 3, 6, 8, 10\}$

¿Cuáles de los siguientes conjuntos son particiones de A?

- a) $\{A_1, A_2, A_5\}$
- b) $\{A_1, A_3, A_5\}$

c) $\{A_3, A_6\}$

d) $\{A_2, A_3, A_4\}$

Ejercicio 8

Sea el conjunto $A = \{1, 2, 5, 6, 7, 9, 11\}$ y digamos que $x \sim y$ si y sólo si x - y es divisible por 5. Comprobar que \sim es una relación de equivalencia sobre A y describir la partición de A en clases de equivalencia.

Ejercicio 9:

- a) Sea el conjunto $A = \{1, 2, 3, 4, 5\}$ y una partición P sobre él, donde $P = \{\{1, 3, 5\}, \{2, 4\}\}$ Determinar la correspondiente relación de equivalencia R inducida por P.
- b) Dada la siguiente relación de equivalencia definida sobre el conjunto $A = \{1, 2, 3, 4, 5\}$

$$R = \{(1,1), (2,3), (3,2), (2,2), (3,3), (4,5), (5,4), (4,4), (5,5)\}$$

Determinar la correspondiente partición sobre A inducida por R.

Ejercicio 10:

Utilizando las definiciones del **ejercicio 16** y agregando $\Delta = \{(x,x)/x \in X\}$, demostrar que:

- 1. R es antisimétrica $\Leftrightarrow R \cap R^{-1} = \emptyset$
- 2. R es débilmente antisimétrica $\Leftrightarrow R \cap R^{-1} \subseteq \Delta$
- 3. R es antisimétrica $\Rightarrow R$ es antirreflexiva.
- 4. R es un orden parcial $\Rightarrow R \cap R^{-1} = \Delta$
- 5. R es antirreflexiva $\Rightarrow R$ es no reflexiva.
- 6. R es reflexiva $\Rightarrow R$ no es antirreflexiva.
- 7. R es reflexiva $\Leftrightarrow \Delta \subseteq R$
- 8. R es antirreflexiva $\Leftrightarrow \Delta \cap R = \emptyset$
- 9. R es simétrica $\Leftrightarrow R = R^{-1}$

Ejercicio 11:

a) Dada una partición $\mathcal{P} = \{X_1, X_2, \dots, X_n\}$ de X demostrar que la relación inducida:

$$R = \{(x,y)/x, y \in X \land \text{ "están en la misma clase o parte } (X_i) \}$$

es una relación de equivalencia.

b) Dada una relación de equivalencia R definida sobre X demostrar que el conjunto

$$P = \{R_{[x]}/R_{[x]} \text{ es una clase de equivalencia de } R\}$$

es una partición sobre X.

Ejercicio 12:

Dada la definición generalizada de producto cartesiano:

$$\underset{\alpha \in \mathcal{I}}{\mathbf{X}} C_{\alpha} = \{ f/f : \mathcal{F} \longmapsto \bigcup_{\alpha \in \mathcal{I}} C_{\alpha} \land (\forall \beta \in \mathcal{I}) (f(\beta) \in C_{\beta}) \}$$

- a) En el producto cartesiano normal podíamos hablar de primero y segundo elemento. De acuerdo a esta definición generalizada, ¿se conserva este vocabulario o debe usar uno alternativo?
- b) Si se realiza el producto cartesiano generalizado entre los conjuntos $\{\mathbb{I}_i\}$, $C_i=\mathbb{I}_i$; $\mathcal{I}=\mathbb{N}$.

$$X_{i \in \mathcal{I}} C_i$$

Indique si la siguiente sucesión pertenece a dicho producto cartesiano, asumiendo que se han omitido los índices de los conjuntos y que la secuencia se encuentra ordenada por el orden de los índices: $(1,3,3,4,2,6,\ldots)$

Ejercicio 13:

Dada la definición generalizada de producto cartesiano:

$$\underset{\alpha \in \mathcal{I}}{X} C_{\alpha} = \{ f/f : \mathcal{F} \longmapsto \bigcup_{\alpha \in \mathcal{I}} C_{\alpha} \land (\forall \beta \in \mathcal{I}) (f(\beta) \in C_{\beta}) \}$$

Analice y dé un ejemplo para un producto cartesiano de sólo dos elementos $(C_1 \times C_2)$.

Ejercicio 14:

a) Proponga una función que sustituya la siguiente tabla:

\boldsymbol{x}	f(x)
1	1
2	8
3	9
4	64
5	25
6	216
7	49
Į.	

- b) Sustituya la función f(x) = 2x + 1 para $x \in \mathbb{I}_{10}$ por una tabla.
- c) ¿En qué caso no se puede sustituir una función por una tabla?