
Self-Adjusting Binary Trees

Daniel Dominic Sleator
Robert Endre Tarjan

Bell L a b o r a t o r i e s
M u r r a y Hi l i , N e w J e r s e y 07974

A b s t r a c t

We use the idea of self-adjusting trees to create new,
simple data structures for priority queues (which we call
heaps) and search trees. Unlike other efficient implementa-
tions of these data structures, self-adjusting trees have no
balance condition. Instead, whenever the tree is accessed,
certain adjustments take place. (In the case of heaps, the
adjustment is a sequence of exchanges of children, in the
case of search trees the adjustment is a sequence of rota-
tions.) Self-adjusting trees are efficient in an amortized
sense: any particular operation may be slow but any
sequence of operations must be fast.

Self-adjusting trees have two advantages over the
corresponding balanced trees in both applications. First,
they are simpler to implement because there are fewer cases
in the algorithms. Second, they are more storage-efficient
because no balance information needs to be stored. Furth-
ermore, a self-adjusting search tree has the remarkable pro-
perty that its running time (for any sufficiently long
sequence of search operations) is within a constant factor o f
the running time for the same set of searches on any fixed
binary tree. It follows that a self-adjusting tree is (up to a
constant factor) as fast as the optimal fixed tree for a par-
ticular probability distribution of search requests, even
though the distribution is unknown.

1. I n t r o d u c t i o n

In this paper we present new ways of using binary
trees to store heaps (otherwise known as "priority queues")
and search trees (also called "dictionaries", "lists", or
"sorted sets"). The ideas and techniques of analysis that we
use for these two problems promise to be applicable to
other data structure problems.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 A C M 0-89791-099-0/83/004/0235 $00.75

Standard tree structures for representing heaps (e.g.
leftist trees [9,12]) and search trees (e.g. AVL trees [1], 2-3
trees [2], trees of bounded balance [13]) obtain their effi-
ciency by obeying an explicit balance condition that
indirectly bounds the length of the relevant paths in the
tree. With such a condition any single access or update
operation takes O(log n) time in the worst case, where n is
the number of items in the tree.

We describe ways of doing away with any explicit
balance condition while retaining the ability to do access
and update operations efficiently. Rather than maintaining
balance, we adjust the tree during each operation using sim-
ple adjustment heuristics. These adjustments are the same
as those used in balanced trees (exchanging children in the
case of heaps and performing single rotations in the case of
search trees). The difference is that they are applied in a
uniform fashion without regard to balance. The result is
that the trees behave (in an amortized sense) as though they
are balanced. This approach has the following advantages
(in both applications):

(i) We can save space of at least one bit per node in the
tree structure, since no balance information needs to
be maintained.

(ii) Balanced tree algorithms are plagued by a multiplicity
of cases. Our algorithms are simpler to state and to
program.

(iii) In most balanced search tree schemes the tree remains
static when only search operations are done. Since
self-adjusting search trees adapt to the input sequence
dynamically, they can perform better (by an arbitrary
factor) than a fixed tree when the access pattern is
non-uniform.

Self-adjusting trees have two disadvantages, the signi-
ficance of which depends on the application. One is that
more adjustments are made than in the corresponding bal-
anced structures. (Maintaining a self-adjusting search tree
requires more rotations than a balanced tree, and maintain-
ing a self-adjusting heap takes more swapping of children
than a leftist heap.) The cost of a rotation in a search tree,
which we assume to be O(1), depends upon the application.
If rotations are unusually expensive, self-adjusting search
trees may be inefficient.

235

The other possible disadvantage is that by a carefully
chosen sequence of operations it is possible to construct a
very unbalanced binary tree. Thus the worst-case bound
per operation is O(n), not O(log n). However with our
adjustment heuristics the running time per operation is
O(log n) when amortized over any sequence of operations.
That is, a sequence of m operations (m -> n) will take
O(mlog n) time in the worst-case, even though a few opera-
tions in the sequence may take fl(n) time. Since almost all
uses of heaps and search trees involve a sequence of opera-
tions rather than just a single operation, an amortized
bound is generally as useful as a bound on each operation.
The only situation in which this might not be true is a real-
time application in which it is important to have a worst-
case bound on the running time of each individual opera-
tion.

There is little previous work on self-adjusting binary
search trees. Allen and Munro [3] (getting their start from
Rivest's work [14] on self-organizing linear lists used for
sequential search) proposed two adjustment heuristics based
on single rotation: single exchange, in which an accessed
item is rotated one step toward the tree root, and move to
root, in which an accessed item is moved all the way to the
tree root by rotating a t every edge along the access path.
Allen and Munro proved that move to root is efficient on
the average, but simple exchange is not. Bitner [7] studied
the average-case behavior of several other heuristics.

Our results are much stronger than those of Bitner
and Allen and Munro. Their heuristics are efficient for an
average sequence of operations, but there are pathological
sequences for which the running time is l-l(n) per operation.

A self-adjusting search tree has the further remark-
able property that its running time for any sufficiently long
sequence of search operations is within a constant factor of
the running time for the same set of searches on any fixed
binary tree. It follows that a self-adjusting tree is as effi-
cient (to within a constant factor) as the optimal fixed tree
for a particular probability distribution of search requests.
Such an optimal tree can only be constructed under the
optimistic assumption that the access probabilities are avail-
able in advance.

Another application of self-adjusting search trees is
in the data structure for dynamic trees of Sleator and Tar-
jan [15,16,17]. We can substitute self-adjusting trees for
biased trees [4,5,6] in that structure without affecting the
running time. The resulting data structure is significantly
simpler since weights no longer have to be maintained.

In Section 2 we describe self-adjusting heaps, prove a
bound on their running time, and present programs to
implement them. In Section 3 we describe self-adjusting
search trees, and prove that they have the claimed proper-
ties. In Section 4 we give programs for two versions of
self-adjusting search trees, and in Section 5 we discuss addi-
tional results and future work.

2. Self-Adjusting Heaps

A heap is a data structure consisting of a set of items
selected from a totally ordered universe, on which the fol-
lowing operations are possible.

findmin(h): Return the minimum item in heap h.

deletemin(h): Delete the minimum item from heap h and
return it.

insert(i, h): Insert item i into heap h, not previously con-
taining i.

meld(hb h2): Return the heap formed by combining disjoint
heaps hi and h2. This operation destroys hi
and h2.

There are several ways to implement heaps in a self-
adjusting fashion. The one we discuss in detail is related to
the leftist trees of Crane [9] and Knuth [12]. These heaps
are so simple that we call them simply self-adjusting heaps.
A self-adjusting heap is a binary tree with one item per
internal node. (All external nodes are null.) Each node x
has three fields associated with it, denoted item(x), left(x),
and right(x). The left and right fields are pointers to the
left and right children, and the item field contains the item
of that node. The items are stored in heap order: If x and y
are nodes and x is the parent of y, then item(x) <- item(y).
To identify and access the heap we use a pointer to the tree
root.

At the end of this section we give programs for the
heap operations; here we give an informal description of
how the operations are implemented. Since heap order
implies that the root is the minimum element, we can per-
form findmin in constant time by returning the item at the
root. The other two operations are implemented using
meld. To do deletemin we meld the left and right subtrees
of the root and return the (old) root. To do insert we make
a one-item heap out of the item to be inserted and meld it
with the existing heap.

To do meld we first delete all the edges (but not the
nodes) on the right paths (paths from the roots to null
nodes through right children) of the two trees. This creates
a forest of trees whose roots have no right child. The trees
are then connected together in heap order by a new right
path through all of the roots. In other words we merge the
right paths of the two trees. (See Figure 1.) The time for
a meld is proportional to the length of the new right path.

To make this algorithm efficient we must keep right
paths short. Leftist trees accomplish this by maintaining
the following property: from any node, the right path is a
shortest path to an external node. Maintaining this pro-
perty requires storing at every node the minimum distance
to an external node, and, after a meld backing up along the
merged path recomputing distances and swapping left and
right children as necessary to maintain the leftist property.
The length of the right path in a leftist tree of n nodes is at
most [lg n], so eac.h of the heap operations has an
O(log n) worst-case time bound.

In our self-adjusting version of this data structure we
meld by merging the right paths of the two trees and then

236

Figure 1. A meld of two self-adjusting heaps.
(a) Merge of right paths.
(b) Swapping of children along

path formed by merge.

swapping the left and right children of every node on the
merged path. (See Figure 1.) This makes the potentially
long right path formed by the merge into a left path. The
theorem and corollary below bound the time needed by a
sequence of melds, and by an arbitrary sequence of self-
adjusting heap operations.

Theorem 1: In a sequence of melds starting with singleton
heaps, the number of edges deleted during the melds is at
most 3Y [lg(ni)], where ni denotes the number of nodes in
the tree resulting from the ith meld.

Proof: This proof is based on the ideas used by Sleator
[15], and Sleator and Tarjan [16] to bo/md the number of
"splice" operations in a network flow algorithm. We define
the weight of each node in a heap to be the number of
nodes in the subtree rooted there. We use these weights to
divide the edges into two classes: heavy and light. The edge
connecting a node x to its parent p(x) is heavy if the weight
of p(x) is less than twice that of x and light if the weight of
p(x) is at least twice that of x. Two facts follow immedi-
ately:

Fact h Of the edges from a node to its children; at
most one can be heavy.

Fact 2: The number of light edges on the path from a
node x to the root of a tree of weight w is at
most [lg(w)l.

To get the bound we focus our attention to the
number of right heavy edges. (These are the heavy edges

that connect a node to its right child.) This quantity (which
we deno teby RH) starts at zero. As we meld, RH fluctu-
ates, but it never falls below zero. Let a and b be the two
trees to be melded by the ith meld. Let na and nb be their
weights, and let ni=na+nb be the weight of the tree result-
ing from the meld.

We wish to bound the total length of all the meld
paths (the right paths traversed in the trees to be melded).
To do this we consider the effect of the ith meld on RH .
By Fact 2 the number of light edges on the meld path of
heap a is at most tlg(na) l. Similarly the number of such
edges in heap b is at most Ilg(nb)J. Thus the total number
of light edges on the two paths is at most 2 [lg (n l) J -1 .
(See Figure 2.)

+ l i g h t < Lt,o'noJ
heavy = h o

l i g h t < [l ~nbJ
heavy = h b

a~ # heavy- h i _< [IgniJ+l

Figure 2. The movement of heavy edges in meld.

Let ha be the number of heavy edges on the meld
path of heap a, and let hb be the number on the meld path
of heap b. Let hi be the number of right heavy edges
incident to the leftmost path of the tree produced by the ith
meld. Fact 1 tells us that each edge counted by h i (except
possibly a bottom one) corresponds to a light edge in the
leftmost path of the heap produced by the ith meld. By
Fact 2 the number of such light edges is at most [lg(ni)J,
so hi <-- [lg(ni)] + 1. The only right heavy edges removed
in the meld process are those counted by ha and hb. The
only ones added by the meld are those counted by hi. Thus
RH decreases by at least ha+hb, then increases by at most
hi ~ [lg(ni)J + 1.

237

Since RH is nonnegative the total increase bounds the
total decrease. Therefore the number of heavy edges on all
the meld paths is at most ~([lg(ni)] + 1). Furthermore the
number of light edges on all the meld paths is at most
Y~(2[lg(ni)]-l). Combining these estimates gives the
result. []

Note. The version of meld described above (and used in the
proof) is not quite the same as that presented below. In the
actual implementation the two right paths are traversed
from the top down. When one of the paths ends the other
is simply attached to it, and the process terminates. Only
those nodes that are traversed have their children
exchanged. (This differs from the description above in
which all nodes on the right paths are always traversed.)
The same theorem holds for the actual implementation, and
the same proof works with slight modification. RH still
increases by at most t lg(n l)]+l , and it decreases by at
least the number of heavy edges on the meld paths. The
original analysis holds for the light edges. []

Corollary 1: A sequence of m findmin, deletemin, insert,
and meld operations takes O(~lg(ni)) time, where n i is the
weight of the largest tree involved in the ith operation.

Proof: The time for findmin is O(1), and insert is just a
special case of meld. Thus to get the result we only have
to modify the above proof'to consider deletemin. Delete-
min simply removes the root, then does a meld. The only
relevant effect of deleting the root is that it may decrease
RH by one. This only improves our bound on the length of
the meld paths, so we have the result. []

What follows is an implementation of the four opera-
tions on self-adjusting heaps. The data structure is as we
described it in the text; each node has three fields: item(x),
left(x) and right(x). The programs are written in a variant
of Dijkstra's guarded command language [10]; we have
used the symbol "1" to denote Dijkstra's "box", and the
symbol " - -" to denote the "swap" operator. The variables
of type heap are actually pointers to nodes. Parallel
assignments all take place simultaneously, so the result is
well-defined even if the same variables appear on the left
and right sides.

item function findmin(heap h);
return item(h)

end ftndmin ;

heap function insert(item i, heap h);
create a new node to which n points;
left(n), right(n), item(n) := null, null, i;
return meld(n, h)

end insert;

heap function deletemin(modifies heap h);
heap i;
i : = h ;
h := meld(left(h), right(h));
return i

end deletemin ;

We have included two versions of meld; a recursive
one, rmeld, and an iterative one, imeld. The function
rxmeM is supplied to avoid doing extra tests for null in the
recursive version.

heap function rmeld(heap hi, h2);
if h2: null - return h 1
[h2#null - return rxmeld(hb h2) fi

end meld;

heap function rxmeld(heaphb hE);
i f h i = n u l l ~ return h2 fi;
i f item(hi) > item(hE) ~ hi--hE fi;
left(hi), right(hi) := rxmeld(right(hl), hE), left(hO;
return hi

end rmeld;

In the iterative version of meld the invariant at the
beginning of the loop is that there are three heaps rooted at
x, h~, and hE that contain all of the nodes. Node y is in the
heap rooted at x, and its left child is eventually going to be
the meld of heaps hi and hE.

heap function imeld(heap hi, hE);
heap x, y;
i f h l = n u l l - return hE [h2=nul l - return hl fi;
if item(hO > item(h2) ~ hl~-hE fi;
x, y, hi, right(hi) := hi, hi, right(hO, left(hi);
do h i 4: null -

i f item(hO > item(hE) ~ hl--hE fi;
y, left(y), hi, right(hO := hi, hi, right(hO, left(hO

od;
left(y) := hE;
return x

end imeld;

Note. The swapping of hi and.hE in the loop can be avoid-
ed by writing different pieces of code for the cases
item(hi) > item(hE) and item(hO <- item(hE). The four-way
parallel assignment can be written with four separate as-
signments as:

left(y) := hi;
y := hi;
hi := right(y);
right(y) := left(y);

With this implementation each iteration of the loop takes
four assignments and two comparisons.

We have tested the iterative and recursive versions of
self-adjusting heaps (exactly as shown above) as well as the

238

iterative and recursive versions of leftist heaps. (The itera-
tive version we used is on page 619 of [12], and the recur-
sive version is in [17].) Preliminary results indicate that
recursive self-adjusting heaps and both forms of leftist
heaps are about equally fast. However the iterative version
of self-adjusting heaps is significantly faster than the others.

The leftist heap algorithms must make two passes
over the merged path: one pass down to connect the pieces
together, and one pass up to swap children and update the
distance fields. The recursive version does this by saving
the path in the recursion stack, and the iterative version
does this by reversing pointers on the way down, and then
fixing them on the way up. The iterative version avoids the
overhead of recursion at the cost of more pointer assign-
ments. The iterative version of self-adjusting heaps is fast
because it has no recursive calls, does no extra pointer
manipulation, and makes only one pass over the merged
path. These advantages make up for that fact that the
average meld path is longer in a self-adjusting heap than in
a leftist heap. According to Brown [8], binomial heaps are
faster than leftist heaps. It Would be interesting to find out
how self-adjusting heaps compare to binomial heaps.

In some applications it is useful to have another form
of delete:

delete(x): Delete node x from the heap containing it,
and return the resulting heap.

It is impossible to implement this type of delete with the
data structure described above. To implement delete(x) it
is necessary to find the parent of x so that its pointer to x
can be changed. This means that we need a pointer from
each node to its parent. If there is such a pointer then
delete(x) can be done as follows: first do deletemin(x)
(which removes node x from the tree rooted at x), then
connect the resulting tree to the parent of x. All of the
other operations can be modified in a straightforward
fashion to update parent pointers.

There is a way to allow deletion in self-adjusting
heaps while still using only two pointers per node. In node
x we keep a down pointer and an across pointer. If x is the
root, then across(x) is null. If x is an only child or a right
child then across(x) points to the parent of x. If x is a left
child and x has a sibling, then across(x) points to that
sibling. If x has no children then down(x) is null, other-
wise down(x) points to the leftmost child of x. This
representation might be called a "triangular heap" since a
node and its two children are connected by a cyclic "trian-
gle" of pointers. Knuth [11] calls this the "binary tree
representation of a tree, with right threads". Notice that if
a node is an only child there is no distinction between it
being a left child or a right child. This doesn't matter since
the tree is heap ordered, and the algorithm can assume that
an only child is a left child. By following at most two
pointers from a node we can access its parent or its left or
right child, which is all we need to implement all of the
heap operations.

3. Self-Adjusting Search Trees

The data structure we call a "search tree" might more
appropriately be called a "symmetrically ordered binary
tree", because most of its applications have nothing to do
with searching. In the most general sense, a symmetrically
ordered binary tree is a data structure that is used to
represent a list of items. The fundamental property of the
list of items that is captured by the symmetrically ordered
binary tree is the order of the items in the list. The kind of
operations that a symmetrically ordered binary tree can
efficiently support, are those that involve manipulation of
nearby items in the list. In general a symmetrically ordered
binary tree can represent the items as internal or as external
nodes in the tree, but in the trees we discuss the items will
be in the internal nodes. In a symmetrically ordered binary
tree the items are arranged in symmetric order: if x is a
node containing item i, then every item in the left subtree
of x comes before i in the list, and every item in the right
subtree of x comes after i in the list.

The basic operation that is generally used to modify
a symmetrically ordered binary tree is the single rotation,
because a rotation maintains the symmetric order of the
nodes. (Case 1 of Figure 4 shows a rotation.) Rotations
are used in AVL trees [1], trees of bounded balance [13],
biased binary trees [6], and many others . . Our self-
adjusting symmetrically ordered binary trees are no excep-
tion. (The reader may be relieved hear that, having
dispelled any misunderstanding about what a search tree is,
we shall proceed to call our data structure a self-adjusting
search tree.)

For the purposes of the discussion that follows we
have assumed that the object to be represented is a list of
numbers ordered by value. In a node x, there are three
fields: item(x) (the number stored in node x), and left(x)
and right(x) (pointers to the left and right subtrees of x).
Every external node is null and we access and identify a
tree with a pointer to the tree root. We shall discuss the
following operations:

access(i,s): If item i is in tree s return a pointer to its
location, otherwise return null.

insert(i,s): Insert item i into tree s, and return the
resulting tree.

delete(i,s): Delete item i from tree s if it is there, and
return the resulting tree.

join2(sl,s2): Return a tree representing the items in sl
followed by those of s2, destroying Sl and s2.
(This assumes all items of sl are less than
those of s2.)

join3(sl,i,s2): Return a tree representing the items in Sl
followed by item i, followed by the items of
s2. This destroys sl and s2. (This assumes
that items of s~ are less than i, and i is less
than the items of s2.)

239

split(i,s): Assuming item i is in tree s, re turn a tree sl
containing all those i tems of s less than i
and a tree s2 containing all. those items
greater than i. This operat ion destroys s.

The following operat ion is unique to self-adjusting
search trees, and is the one from which we build all of the
others.

splay(i,s): Return a tree represent ing the same list
represented by s. If i is in the tree, then it
becomes the root. If i is not in the tree,
then ei ther the immediate successor of i or
the immediate predecessor of i becomes the
root. This operat ion destroys s.

To do access(i,s) we splay(i,s); then i is in the tree
if and only if it is at the root. To do insert(i,s) we
splay(i,s), then break the result ing tree into two trees, one
with i tems less than i, one with i tems greater than i. (This
is just breaking ei ther the left or the r ight link from the
root .) Then we make these two trees the children of a new
root with i tem i. To do join2(sl, s2) we splay(infinity,sO,
which makes the r ightmost node of sl into the root; then we
at tach s2 as the r ight child of t h i s root. To do
join3(s], i, s2) we make a node containing item i, and
make its left child s= and its right child s2. To do
delete(i,s) we splay(i,s), delete the root, and join2 the left
and right subtrees. To do split(i,s) we splay(i,s) and
re turn the left and right subtrees of the root. (See Figure
3.)

insert (i,s):
i i

splay /o Z ~

i i

splay i io,nz

splay i i

.A A

A

Figure 3. How the operat ions are implemented using splay.

To do splay(i,s) we first use the item fields to find
the vertex that is going to be moved to the root. We start
with y equal to the root of s and repeat the following
search step until y = n u l l or item(y)=i: If i<item(y), replace
y by its left child; if i>item(y), replace y by its right child.
Let x be the last non-null vertex reached by this process;
this is the vertex to be moved to the root. To fihish the

splay we begin at node x and t raverse the path to the root ,
performing a single rota t ion at each node. The rotat ions
are done in pairs, in an order that depends on the structure
of the tree. The following splay step is repeated until x is
the tree root (see Figure 4): If x has a parent but no
grandparent , rotate at p(x) (the parent of x). If x has a
grandparent and x and p(x) are bo th left or bo th r ight chil-
dren, rotate at p(p(x)) then at p(x). If x has a g randparen t
and x is a left and p(x) a r ight child, or vice-versa, rotate
at p(x) and again at the new p(x). The overall effect of the
splay is to move x to the root while rea r ranging the rest of
the original path f rom x to the root so that any node in tha t
path is about half as far f rom the root as it used to be.
Figure 5 shows a series of splays on a tree that starts out
being a long left path.

y x

z y x

z z x

cass3:~ :::~ ~ : ~ : ~ ~

Figure 4. A splay step start ing at node x.

I0
8 9 I

6 8

:g(\,
2 2 5 ,Y

sploy(2,s)

2

I 4 ~ 1 0

3 9

7

,o

: 3 0 ~ 5 0"9

6

splay(6, s) , . 2 / ~

5 I0

a 9

Figure 5. Four splay operat ions.

240

Splaying is reminiscent of the path compaction
heuristics (path halving in part icular) used in efficient algo-
r i thms for disjoint set union [17,18]. Al though the tech-
niques that Tar jan and van Leeuwen [18] used to analyze
path halving can be modified to apply to splaying, there is a
simpler analysis, which follows.

To analyze the runn ing t ime of a sequence of tree
operat ions we use a credit invariant. (This is what we
called a token invariant or chip invariant in our previous
work with Bent [4,5,6].) We assign to each item i an indi-
vidual weight iw(i). These weights are real numbers greater
than or equal to one, whose values we shall choose later.
We define the total weight tw(x) of a node x to be the sum
of the individual weights of all descendants of x, including
x itself. Finally, we define the rank of a node x to be
r (x) = [lg(tw(x))J . We mainta in the following credit invari-
ant: Any internal node x holds r(x) credits.

Each credit represents the power to do a fixed
amount of work (e.g. rotat ions, comparisons, or edge
traversals) . Each t ime we do any work we must pay for it
with a credit. If we modify the structure we may have to
put in credits to mainta in the credit invariant , or we may be
able to remove credits (because less are required after the
modification than before) and use them to do work. If we
have a structure that initially has C credits in it and we do
a sequence of n operat ions where the i th one requires c(i)
net credits (number spent on work + number put in the
tree - number taken out) , and the final structure has C '
credits in it, then the runn ing time of the sequence is at
most C - C ' + E c (i) . The quant i ty c(i) is called the credit
time of the i th operat ion. The following lemma tells us the
credit t ime of the splay operat ion.

L e m m a 1. Splaying a tree with root v at a node x while
mainta in ing the credit invar iant takes 3(r (v) - r (x))+l
credits.

Proof. We shall need the following rank rule: If s and t are
siblings with equal rank, and their parent is p , then
r(p) >- l+r(s). This follows from the fact that
tw(s) -> 2 r~s~ and tw(t) :> 2 r(t), so
tw(p) -> t w (s) + t w (t) -> 2 rls)+l. Thus r (p) is at least
r(s) + 1.

Consider a splay step involving the nodes x, y=p(x),
and z = p (p (x)) , where p () denotes the parent function
before the step. Let r() and r ' () , tw() and tw'() denote
the rank and total weight functions before and after the
step, respectively. To this step we allocate 3(r ' (x) -r (x))
credits and one addit ional credit if this is the last step.
There are three cases (see Figure 4):

Case 1: Node z is undefined. This is the last step of the
splay and the extra credit allocated to the step pays for
the work. We have r'(x)=r(y). Thus the number of
credits that must be added to the tree to mainta in the
invar iant is r ' (y) - r (x) <- r ' (x) - r (x) , which is one third
of the remain ing credits on hand.

Case 2: Node z is defined and x and y are both left or both
r ight children. We have r'(x)=r(z). The number of
credits that must be added to the tree to mainta in the
invar iant is r ' (y) + r ' (z) - r (y) - r (x) <-- 2(r ' (x) -r (x)) ,
which is two thirds of the credits on hand. If
r'(x) > r(x), there is at least one extra credit on hand
to pay for the step. Otherwise, r ' (x)=r(x)=r(y)=r(z) .
In this case r'(z) < r(x) by the rank rule. (The rank
rule is applied to the tree occurring after one rotat ion,
with root y of rank r '(x)=r(z) , left subtree rooted at x
with rank r(x), and right subtree rooted at z of rank
r'(z).) Also r'(y) <- r(y). Thus by putt ing the credits
f rom y onto y and putt ing all but one of the credits
f rom x onto z we mainta in the invar iant and get one
credit with which to pay for the operat ion.

Case 3: Node z is defined a n d x is a left a n d y is a right
child or vice-versa. As in Case 2, r'(x)=r(z). In addi-
tion we have that tw'(y) --< tw(y), so r'(y) <- r(y). To
mainta in the invar iant on x and y we need only move
credits from z and y. To satisfy the invar iant on z we
use the credits on x and need an addit ional
r ' (z) - r (x) <-r ' (x) - r (x) , which is one third of the
credits on hand. If r'(x) > r(x) then there is at least
one extra credit on hand to pay for the step. Otherwise
r ' (x)=r(x)=r(y)=r(z) , and by the rank rule ei ther
r'(y) < r'(x) or r'(z) < r'(x) or both. We can use the
credit f rom the node that decreased in rank to pay for
the operation.

Summing over all steps of a splay, we find that the
total number of credits used is at most
3 (r ' (x) - r (x)) + l = 3 (r (v) - r (x)) + l , where r ' () and r ()
denote the rank function before and after the ent ire splay. ~3

In order to complete the analysis we must consider
the effect of insertion, deletion, join2, join3, and split on
the ranks of nodes. For the moment let us define the indi-
vidual weight of every item to be 1. Then every node has a
rank in the range [0 , / lg n]] , and the lemma gives a bound
of 3 [lg n] + 1 credits for splaying. To insert a new item i
we first do a splay, then put the new i tem at the root. The
number of credits needed at the root is Jig n] . Joining two
trees also requires at most [lg n] new credits at the root.
(In both cases n is the size of the new tree.) A three way
join requires at most [lg nJ credits at the root. To delete,
we do a splay, remove the root, then do a two way join.
This needs no extra credits beyond those used by the two
splays because the credits on the deleted root can be placed
on the root of the final tree. Split needs no credits beyond
those used in the splay.

Suppose we start with a set of singleton trees, do a
series of operat ions and end up with a forest of trees. The
number of credits is zero initially, and at the end it is at
least zero. Combining this with the above paragraph gives
us the following theorem:

Theo rem 2: The total t ime required for a sequence of m
self-adjusting search tree operat ions, start ing with singleton
trees, is O(mlog n) , where n is the number of items.

241

Our analysis of splay allows us to get an analogous
but more general result when the individual weights of the
nodes are not all the same. Suppose the initial configura-
tion consists of a set of separate nodes, and the number of
credits on node i with individual weight iw(i) is
[lg(iw(i))J. After a sequence of operations we reach a
final configuration with the same set of nodes grouped into
arbitrary trees. In this final forest of trees, the number of
credits on node i with total weight tw(i) is / lg(tw(i))] .
Since tw(i)>-iw(i), the number of credits in the final confi-
guration is at least as many as in the initial configuration.
This means that the total running time of the sequence of
operations is bounded by the number of credits allotted to
the operations. Recall that this allotment of credits to an
operation is called the credit time of the operation. The fol-
lowing theorem bounds the credit time of each of the basic
operations as a function of the weights of the nodes
involved.

Theorem 3:

The credit t ime of splay(x,s) is O (l g ~) .

The credit time of split(x,s) is O (l g ~) .
tw(x)

The credit time of join3(sl,i,s2) is O(lg tW(Sl)+tw(s2)).
iw(i)
tw(sO+tw(s2)

The credit t ime of join2(sl,s2) is O(lg),
tw(x)

where x is the rightmost node of tree s~.

The credit time of insert(x,s) is

[, tw'(s)] where x - is the
0 ~lg min(tw(x-) , tw(x), tw(x+)) j '
node immediately before x in the final tree, x + is the
one immediately after, and tw'(s) is the total weight
of s after the operation.

tw(s) }
The credit time of delete(x,s) is O lgmin(tw(x_) , tw(x)) '

where x - is the node immediately before x in the ini-
tial tree.

Proof: All of these results follow by considering the credit
times of the appropriate splay operations and combining
these with the changes in the credits needed on various
nodes. []

The remarkable thing about this result is that the
algorithm achieves these bounds without actually having
any information about the weights. This means that what-
ever the running time is, it must simultaneously satisfy the
bounds given in Theorem 3 for all weight distributions.

The credit times for split, three-way join, insert, and
delete given in Theorem 3 are the same as those that Bent,
Sleator, and Tarjan give for biased trees [6]. The credit
times for two-way joins on self-adjusting trees and biased
trees are not comparable, because in self-adjusting trees the
items are stored in the internal nodes and in biased trees
they are stored in the external nodes. Self-adjusting trees
are simpler than biased trees because no weight information
needs to be stored or updated. The only situation in which
biased trees may have an advantage is if worst-case per-

operation running time is important. In locally biased
trees, access operations have a good worst-case time bound;
in globally biased trees, all the operations have a good
worst-case time bound [6].

Another interesting consequence of Theorem 3 is that
we can relate the behavior of a self-adjusting tree to that of
any static tree.

Theorem 4: Let t be the number of comparisons that occur
in a sequence of searches f rom the root in a static binary
search tree with n nodes. The time to do the same
sequence of splay operations in a self-adjusting search tree
is O(t+n2) .

Proof: Let the root of the static tree be r. Let the depth of
a node x in the static tree (denoted d(x)) be the distance
from x to the root, r. (d(r)=O.) We assign individual
weights to the nodes as follows: For the root r, iw(r)=3 d
(where d is the largest depth in the tree). For any other
vertex x, iw(x)=3-d(X)iw(r). With this definition the
deepest node has weight 1. It is easy to show by induction
that 3iw(x) >-- tw(x) for all nodes x. (Here tw(x) denotes
the total weight of x in the static tree.) In particular we
have 3iw(r) >- tw(r), from which it follows that
iw(x) >- 3-d(x)-ltw(r). Rearranging and taking logarithms
gives us

tw(r)
(lg3)(d(x)+ l) -> lg iw(x) "

The left hand side of this inequality is lg3 times the number
of comparisons needed to search for x in the static tree.
The right hand side is the credit t ime to splay at x in a serf
adjusting tree with the individual weights as specified
above.

It remains for us to show that the number of credits
initially in the self-adjusting tree is O(n2). It is clear that
the total weight of any node in the self-adjusting tree is at
most tw(r). But tw(r) ~ 3iw(r)=3 a+l ~ 3", because d, the
largest depth in the tree, is at most n - 1 . This means that
the number of credits on each node is at most (lg3)n, so the
total number of credits in the tree initially is at most
(lg3)n 2. []

A corollary of this result is that the running time of a
self-adjusting tree is within a constant factor of the running
time of the optimal static tree for any particular distribu-
tion. The surprising thing about this is that the self-
adjusting tree behaves this way without knowing anything
about the distribution in advance. (Note however that the
self-adjusting tree takes some time to "learn" the distribu-
tion. This learning time is embodied in the O(n 2) over-
head .)

There is another interesting result concerning the
running time of sequences of splays. It follows from the
alternate analysis of splay (involving ideas from path
compression), and we do not prove it here.

Theorem $ (log(At) theorem): The credit t ime of a splay
of node x is O (l o g (l + A t)) , where At is the number of
splays done between the current splay of x and the previous
splay of x.

242

4. Implementat ion o f Sel f -Adjust ing Trees

There are several slightly different formulations of
the splay operation that all have the desirable properties
discussed in Section 3. The method of Section 3 is easy to
describe, but results in a fairly complicated program. In

• this section we present programs for two splay algorithms: a
top-down method, and a bottom-up method.

In the first formulation the information stored in
each node is the same as that described in Section 3: each
node has left, right and item fields. The difference is that
here the splay operation rearranges the tree on the way
down, instead of searching down and rearranging the tree
on the way up. (We do not present programs for the other
operations, because they are easy to write given splay.)

global tree dummy;
dummy := create tree node;

tree function splay(item i, tree s);
string state;
tree l, r, lp, rp ;
i f s = n u l l ~ return null fi;
le f t (dummy) := null; right(dummy) := null;
state := "N"; l := r := dummy;
do s#:nul l and i > item (s) -

if state#"L" - right(l) := s; lp := 1; state := "L"
[s ta t e="L '' ~ right(l) := left(s); right(lp) "= s;

left(s) := 1; state := "N"
fi;
l := s; s := right(s)

[s # n u l l and i < i tem(s)
i f state ~ "R " ~ left(r) := s; rp := r; state := "R"
[s ta te="R" - left(r) := right(s); left(rp) := s;

right(s) := r; state := "N"
fi;
r := s; s := left(s);

od;
i f s:/:null ~ right(l) := left(s); left(r) := right(s)
I s = null -

i f r = d u m m y - s := I; right(lp) := left(l)
[r # d u m m y - s := r; left(rp) := right(r) fi

fi;
left(s) := right(dummy); right(s) := left(dummy);
return s

end splay;

Variables of type tree are pointers to nodes in the
tree. Initially s (assumed to be non-null) points to the root
of the tree, and the "left" tree and "right" trees are empty.
(The right and left fields of the dummy node point to the
roots of the left and right tree respectively. The dummy
node obviates special purpose code for the case when the
left or the right tree is null.) Splay walks down the tree
building up the left tree from all those subtrees to the left
of i and building the right tree from all those subtrees to
the right of i. (The variables 1 and r and lp and rp point to
the places in the left and right trees where the building
takes place.) When it reaches either null or the item it was
looking for, it stops and puts the left tree, the node it was

looking for, and the right tree together and returns the
result. The three-value variable state is used to alter the
way in which a tree is added to the left tree or the right
tree. This variable is what enables this version of splay to
achieve the time bounds of Section 3.

In many potential uses of self-adjusting trees the pro-
cess of searching for an item is unnecessary. In these cases
we already have a pointer to the node we are interested in,
and we want to find out something about the relationship
between it and the rest of the nodes. (An example of this
is in the data structure for dynamic trees, in which we want
to find out the minimum cost node of all those to the left of
a particular node.) In these applications the item field is
useless, but in its place we need a parent pointer. With a
parent pointer we can find our way to the root of a tree
given only a pointer to some node in it. If desired we can
avoid using extra parent pointers by using the "triangular"
representation method at the end of Section 2.

The following is a bottom-up implementation of splay
that uses parent pointers. The input to splay is a pointer to
a node. Splay makes that node into the root of the tree.
The parent of the root is null.

tree function rotateleft(tree a);
tree b;
b := right(a);
right(a), parent(lef t (b)) := left(b), a;
left(b), parent(a) := a, b;
return b

end rotateleft;

tree function rotateright(tree a); [analogous to rotateleft]

procedure splay(tree x);
string state;
tree l, r, y , z;
state = "N";
1, r, z := left(x), r ight(x) , x;
y := parent(x);
do y ~ null

if r igh t (y)=z
right(y), parent(I) := l, y;
z, 1, y := y , y , parent(y);
i f s t a t e ~ " L " ~ state := "L"
[s ta te="L" ~ l := rotateleft(l);

state := "N" fi
I l e f t (y)=z -

left(y), parent(r) := r, y;
z, r, y := y , y , parent(y);
i f s ta te~ "R" ~ state := "R"
[s ta te="R" ~ r := rotateright(r);

state := "N" fi
fi

od;
left(x), parent(l) := I, x;
right(x), parent(r) := r, x;
parent(x) := null

end splay;

243

The function rotateleft does a left rotation of a node
(a) and its right child (b). It returns the new parent (b).
In the case that the left child of b is null, an assignment to
the parent of null takes place. Allowing this simplifies the
code, and only costs one extra node.

This implementation of splay is analogous to the first
one, except that the traversal is bottom-up instead of top-
down. The variables l and r point to the current left and
right trees. The variable state is used as before to guide
the rotations. The advantage of this bottom-up method
over the one described in Section 3 is that there are fewer
pointer updates.

Split, join and insert can be implemented essentially
as described in Section 3. The operation delete(x) can be
implemented with only one call to splay. First the children
of x are joined together, then the resulting tree is placed
where x was in the oritinal tree. (We needn't traverse the
path from x to the root, nor splay along that path.)

5. Additional Results

Our results on self-adjusting binary trees raise a
number of general and specific questions about self-
adjusting data structures, and we are continuing our work
in this area. Below we mention one major application and
several variants of self-adjusting search trees and heaps.

Self-adjusting search trees can be used in place of
biased trees in the dynamic tree structure of Sleator and
Tarjan [15,16,17]. The result is a considerable simplifica-
tion of that structure. Details may be found in [17], and
will appear in the full version of this paper.

There is another version of splay that might be called
"move half way to the root". In this version the splayed
node does not move all the way to the root, but its distance
to the root is halved. The only difference between it and
the bottom-up version is that in case 2 (see Figure 4) only
the first rotation is done. The theorems of Section 3 apply
to this version of splay. The reason it is not as useful as
the move to root versions is that the join and split opera-
tions have to be implemented separately, rather than fol-
lowing automatically from splay.

It is possible to implement self-adjusting search trees
with all of the items stored in the external nodes. Splay
then moves a specified external node to Within two steps of
the root. The algorithm to do this is a simple modification
of the algorithm to do bottom-up splay given in Section 4.
One advantage of this is that the actual time to join two
trees is constant, although the credit time is O(Iog n).

Another alternative implementation of splay is one in
which the ranks are actually kept in the nodes. Rotations
are only done in the splay when the rank of a node is equal
to the rank of its grandparent (using the splay of Section
3). With this implementation the number of credits in the
tree decreases by at least one with each rotation. This
means that if we do a series of searches the number of rota-
tions is bounded by the number of credits initially in the
tree. Although this version does far fewer rotations, it
lacks much of the beauty of the other forms of self-

adjusting search trees. Weights must be specified in
advance and kept in the nodes, and a different version of
splay must be used for the split and join operations.

There are also other versions of self-adjusting heaps
that deserve mention. We can build a heap directly out of
a self-adjusting search tree by making each node of the
search tree correspond to one of the keys in the heap. (The
keys can be stored in any an arbitrary order.) In each node
of the self-adjusting search tree we store two fields, a key
field and a minkey field. The key field is just the key
represented by that node. The minkey field contains the
minimum key in the subtree rooted there. To do a delete-
min we first find the node with the minimum key by walk-
ing down the tree from the root always taking the Child that
has the minimum minkey field, until we get to the node
whose key is the minkey of the root. We then use our self-
adjusting search tree routine to delete this node from the
tree. (The routines can easily be modified to maintain the
minkey field.) The advantage of this form of heap is that
the keys can also be maintained in total order that is
independent of the heap order of the keys. (Splitting and
joining of these heaps based on the symmetric order of the
nodes is possible.)

We can use a similar method to represent a heap by
a self-adjusting search tree with all of the keys stored in the
external nodes. In this version each external node has a key
field, and each internal node has a minkey field. The
advantage of this scheme is that we can meld two heaps (by
joining the self-adjusting trees) in constant actual time, as
mentioned earlier in this section.

We conjecture that under a suitable measure of com-
plexity, self-adjusting trees perform within a constant factor
of any binary search tree scheme, on any sequence of
operations. We have formulated a rigorous version of this
conjecture and are attempting to prove it. Details will
appear in the full paper.

References

[1] G . M . Adel'son-Vel'skii and E. M. Landis, "An
algorithm for the organization of information," Soviet
Math. Dokl., 3 (1962), 1259-1262.

[2] A . V . Aho, J. E. Hopcroft, and J. D. Ullman, The
Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[3] B. Allen and I. Munro, "Self-organizing search
trees," Journal ACM 25 (1978), 526-535

[4] S . W . Bent, Dynamic Weighted Data Structures, TM
STAN-CS-82-916 Computer Science Dept., Stanford
University, Stanford, CA 94305, 1982.

[5] S .W. Bent, D. D. Sleator and R. E. Tarjan, "Biased
2-3 trees," Proc. Twenty-First Annual IEEE Symp. on
Foundations of Computer Science (1980), 248-254

[6] S .W. Bent, D. D. Sleator and R. E. Tarjan, "Biased
search trees," to appear.

244

[7] J . R . Bitner, "Heuristics that dynamically organize
data structures," SlAM Journal on Computing 8
(1979), 82-110.

[8] M . R . Brown, The Analysis Of a Practical and Nearly
Optimal Priority Queue, TM STAN-CS-77-600 Com-
puter Science Dept., Stanford University, Stanford,
CA 94305, 1977.

[9] C . A . Crane, Linear Lists and Priority Queues as Bal-
anced Binary Trees, TM STAN-CS-72-259 Computer
Science Dept., Stanford University, Stanford, CA
94305, 1972.

[10] E. W. Dijkstra, A Discipline of Programming, Pren-
tice Hall, Englewood Cliffs, NJ, 1976.

[11] D. E. Knuth, The Art of Computer Programming,
Volume 1: Fundamental Algorithms, Second Edition,
Addison-Wesley, Reading, MA, 1973.

[12] D. E. Knuth, The Art of Computer Programming,
Volume 3: Sorting and Searching, Addison-Wesley,
Reading, MA, 1973.

[13] J. Nievergelt and E. M. Reingold, "Binary search
trees of bounded balance," SIAM journal on Comput-
ing, 2 (1973) 33-43.

[14] R. L. Rivest, "On Self-organizing sequential search
heuristics," Comm. ACM 19 (1976), 63-67.

[15] D . D . Sleator, An O(nmlog n) Algorithm for Maximum
Network Flow, TM STAN-CS-80-831 Computer Sci-
ence Dept., Stanford University, Stanford, CA
94305, 1980.

[16] D . D . Sleator and R. E. Tarjan, "A data structure
for dynamic trees," Journal Computer and System Sci-
ences, to appear; see also Thirteenth Annual ACM
Symposium on Theory of Computing (1981), 114-122.

[17] R. E. Tarjan, Data Structures and Network Algo-
rithms, Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA, 1983, to appear.

[18] R. E. Tarjan and J. van Leeuwen, "Worst-case
analysis of set union algorithms," Journal ACM, sub-
mitted.

245

