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A b s t r a c t  

We use the idea of  self-adjusting trees to create new, 
simple data structures for priority queues (which we call 
heaps) and search trees. Unlike other efficient implementa- 
tions of  these data structures, self-adjusting trees have no 
balance condition. Instead, whenever the tree is accessed, 
certain adjustments take place. (In the case of heaps, the 
adjustment is a sequence of exchanges of children, in the 
case of search trees the adjustment is a sequence of rota- 
tions.) Self-adjusting trees are efficient in an amortized 
sense: any particular operation may be slow but any 
sequence of  operations must be fast. 

Self-adjusting trees have two advantages over the 
corresponding balanced trees in both applications. First, 
they are simpler to implement because there are fewer cases 
in the algorithms. Second, they are more storage-efficient 
because no balance information needs to be stored. Furth- 
ermore,  a self-adjusting search tree has the remarkable pro- 
perty that its running time (for any sufficiently long 
sequence of  search operations) is within a constant factor o f  
the running time for the same set of searches on any fixed 
binary tree. It follows that a self-adjusting tree is (up to a 
constant factor) as fast as the optimal fixed tree for a par- 
ticular probability distribution of search requests, even 
though the distribution is unknown. 

1. I n t r o d u c t i o n  

In this paper we present new ways of using binary 
trees to store heaps (otherwise known as "priority queues") 
and search trees (also called "dictionaries", "lists", or 
"sorted sets"). The ideas and techniques of  analysis that we 
use for these two problems promise to be applicable to 
other data structure problems. 
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Standard tree structures for representing heaps (e.g. 
leftist trees [9,12]) and search trees (e.g. AVL trees [1], 2-3 
trees [2], trees of bounded balance [13]) obtain their effi- 
ciency by obeying an explicit balance condition that 
indirectly bounds the length of  the relevant paths in the 
tree. With such a condition any single access or update 
operation takes O(log n) time in the worst case, where n is 
the number of  items in the tree. 

We describe ways of  doing away with any explicit 
balance condition while retaining the ability to do access 
and update operations efficiently. Rather than maintaining 
balance, we adjust the tree during each operation using sim- 
ple adjustment heuristics. These adjustments are the same 
as those used in balanced trees (exchanging children in the 
case of  heaps and performing single rotations in the case of  
search trees). The difference is that they are applied in a 
uniform fashion without regard to balance. The result is 
that the trees behave (in an amortized sense) as though they 
are balanced. This approach has the following advantages 
(in both applications): 

(i) We can save space of at least one bit per node in the 
tree structure, since no balance information needs to 
be maintained. 

(ii) Balanced tree algorithms are plagued by a multiplicity 
of  cases. Our algorithms are simpler to state and to 
program. 

(iii) In most balanced search tree schemes the tree remains 
static when only search operations are done. Since 
self-adjusting search trees adapt to the input sequence 
dynamically, they can perform better (by an arbitrary 
factor) than a fixed tree when the access pattern is 
non-uniform. 

Self-adjusting trees have two disadvantages, the signi- 
ficance of  which depends on the application. One is that 
more adjustments are made than in the corresponding bal- 
anced structures. (Maintaining a self-adjusting search tree 
requires more rotations than a balanced tree, and maintain- 
ing a self-adjusting heap takes more swapping of children 
than a leftist heap.) The cost of a rotation in a search tree, 
which we assume to be O(1), depends upon the application. 
If  rotations are unusually expensive, self-adjusting search 
trees  may be inefficient. 

235 



The other possible disadvantage is that by a carefully 
chosen sequence of operations it is possible to construct a 
very unbalanced binary tree. Thus the worst-case bound 
per operation is O(n), not O(log n). However with our 
adjustment heuristics the running time per operation is 
O(log n) when amortized over any sequence of operations. 
That is, a sequence of m operations (m -> n) will take 
O(mlog n) time in the worst-case, even though a few opera- 
tions in the sequence may take fl(n) time. Since almost all 
uses of heaps and search trees involve a sequence of opera- 
tions rather than just a single operation, an amortized 
bound is generally as useful as a bound on each operation. 
The only situation in which this might not be true is a real- 
time application in which it is important to have a worst- 
case bound on the running time of each individual opera- 
tion. 

There is little previous work on self-adjusting binary 
search trees. Allen and Munro [3] (getting their start from 
Rivest's work [14] on self-organizing linear lists used for 
sequential search) proposed two adjustment heuristics based 
on single rotation: single exchange, in which an accessed 
item is rotated one step toward the tree root, and move to 
root, in which an accessed item is moved all the way to the 
tree root by rotating a t  every edge along the access path. 
Allen and Munro proved that move to root is efficient on 
the average, but simple exchange is not. Bitner [7] studied 
the average-case behavior of several other heuristics. 

Our results are much stronger than those of Bitner 
and Allen and Munro. Their heuristics are efficient for an 
average sequence of operations, but there are pathological 
sequences for which the running time is l-l(n) per operation. 

A self-adjusting search tree has the further remark- 
able property that its running time for any sufficiently long 
sequence of search operations is within a constant factor of 
the running time for the same set of searches on any fixed 
binary tree. It follows that a self-adjusting tree is as effi- 
cient (to within a constant factor) as the optimal fixed tree 
for a particular probability distribution of search requests. 
Such an optimal tree can only be constructed under the 
optimistic assumption that the access probabilities are avail- 
able in advance. 

Another application of self-adjusting search trees is 
in the data structure for dynamic trees of Sleator and Tar- 
jan [15,16,17]. We can substitute self-adjusting trees for 
biased trees [4,5,6] in that structure without affecting the 
running time. The resulting data structure is significantly 
simpler since weights no longer have to be maintained. 

In Section 2 we describe self-adjusting heaps, prove a 
bound on their running time, and present programs to 
implement them. In Section 3 we describe self-adjusting 
search trees, and prove that they have the claimed proper- 
ties. In Section 4 we give programs for two versions of 
self-adjusting search trees, and in Section 5 we discuss addi- 
tional results and future work. 

2. Self-Adjusting Heaps 

A heap is a data structure consisting of a set of items 
selected from a totally ordered universe, on which the fol- 
lowing operations are possible. 

findmin(h): Return the minimum item in heap h. 

deletemin(h): Delete the minimum item from heap h and 
return it. 

insert(i, h): Insert item i into heap h, not previously con- 
taining i. 

meld(hb h2): Return the heap formed by combining disjoint 
heaps hi and h2. This operation destroys hi 
and h2. 

There are several ways to implement heaps in a self- 
adjusting fashion. The one we discuss in detail is related to 
the leftist trees of Crane [9] and Knuth [12]. These heaps 
are so simple that we call them simply self-adjusting heaps. 
A self-adjusting heap is a binary tree with one item per 
internal node. (All external nodes are null.) Each node x 
has three fields associated with it, denoted item(x), left(x), 
and right(x). The left and right fields are pointers to the 
left and right children, and the item field contains the item 
of that node. The items are stored in heap order: If x and y 
are nodes and x is the parent of y, then item(x) <- item(y). 
To identify and access the heap we use a pointer to the tree 
root. 

At the end of this section we give programs for the 
heap operations; here we give an informal description of 
how the operations are implemented. Since heap order 
implies that the root is the minimum element, we can per- 
form findmin in constant time by returning the item at the 
root. The other two operations are implemented using 
meld. To do deletemin we meld the left and right subtrees 
of the root and return the (old) root. To do insert we make 
a one-item heap out of the item to be inserted and meld it 
with the existing heap. 

To do meld we first delete all the edges (but not the 
nodes) on the right paths (paths from the roots to null 
nodes through right children) of the two trees. This creates 
a forest of trees whose roots have no right child. The trees 
are then connected together in heap order by a new right 
path through all of the roots. In other words we merge the 
right paths of the two trees. (See Figure 1.) The time for 
a meld is proportional to the length of the new right path. 

To make this algorithm efficient we must keep right 
paths short. Leftist trees accomplish this by maintaining 
the following property: from any node, the right path is a 
shortest path to an external node. Maintaining this pro- 
perty requires storing at every node the minimum distance 
to an external node, and, after a meld backing up along the 
merged path recomputing distances and swapping left and 
right children as necessary to maintain the leftist property. 
The length of the right path in a leftist tree of n nodes is at 
most [lg n],  so eac.h of the heap operations has an 
O(log n) worst-case time bound. 

In our self-adjusting version of this data structure we 
meld by merging the right paths of the two trees and then 
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Figure 1. A meld of two self-adjusting heaps. 
(a) Merge of right paths. 
(b) Swapping of children along 

path formed by merge. 

swapping the left and right children of every node on the 
merged path. (See Figure 1.) This makes the potentially 
long right path formed by the merge into a left path. The 
theorem and corollary below bound the time needed by a 
sequence of melds, and by an arbitrary sequence of self- 
adjusting heap operations. 

Theorem 1: In a sequence of melds starting with singleton 
heaps, the number of edges deleted during the melds is at 
most 3Y [lg(ni)], where ni denotes the number of nodes in 
the tree resulting from the ith meld. 

Proof: This proof is based on the ideas used by Sleator 
[15], and Sleator and Tarjan [16] to bo/md the number of 
"splice" operations in a network flow algorithm. We define 
the weight of each node in a heap to be the number of 
nodes in the subtree rooted there. We use these weights to 
divide the edges into two classes: heavy and light. The edge 
connecting a node x to its parent p(x) is heavy if the weight 
of p(x) is less than twice that of x and light if the weight of 
p(x) is at least twice that of x. Two facts follow immedi- 
ately: 

Fact h Of the edges from a node to its children; at 
most one can be heavy. 

Fact 2: The number of light edges on the path from a 
node x to the root of a tree of weight w is at 
most [lg(w)l.  

To get the bound we focus our attention to the 
number of right heavy edges. (These are the heavy edges 

that connect a node to its right child.) This quantity (which 
we deno teby  RH) starts at zero. As we meld, RH fluctu- 
ates, but it never falls below zero. Let a and b be the two 
trees to be melded by the ith meld. Let na and nb be their 
weights, and let ni=na+nb be the weight of the tree result- 
ing from the meld. 

We wish to bound the total length of all the meld 
paths (the right paths traversed in the trees to be melded). 
To do this we consider the effect of the ith meld on RH . 
By Fact 2 the number of light edges on the meld path of 
heap a is at most tlg(na) l. Similarly the number of such 
edges in heap b is at most Ilg(nb)J. Thus the total number 
of light edges on the two paths is at most 2 [ lg (n l ) J -1 .  
(See Figure 2.) 

+ l i g h t  < Lt,o'noJ 
# heavy = h o 

# l i g h t  < [ l ~nbJ  
# heavy  = h b 

a~ # heavy- h i _< [IgniJ+l 

Figure 2. The movement of heavy edges in meld. 

Let ha be the number of heavy edges on the meld 
path of heap a,  and let hb be the number on the meld path 
of heap b. Let hi be the number of right heavy edges 
incident to the leftmost path of the tree produced by the ith 
meld. Fact 1 tells us that each edge counted by h i (except 
possibly a bottom one) corresponds to a light edge in the 
leftmost path of the heap produced by the ith meld. By 
Fact 2 the number of such light edges is at most [lg(ni)J, 
so hi <-- [lg(ni)] + 1. The only right heavy edges removed 
in the meld process are those counted by ha and hb. The 
only ones added by the meld are those counted by hi. Thus 
RH decreases by at least ha+hb, then increases by at most 
hi ~ [lg(ni)J + 1. 
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Since RH is nonnegative the total increase bounds the 
total decrease. Therefore the number of heavy edges on all 
the meld paths is at most ~([lg(ni)] + 1). Furthermore the 
number of light edges on all the meld paths is at most 
Y~(2[lg(ni)]-l). Combining these estimates gives the 
result. [] 

Note. The version of meld described above (and used in the 
proof) is not quite the same as that presented below. In the 
actual implementation the two right paths are traversed 
from the top down. When one of the paths ends the other 
is simply attached to it, and the process terminates. Only 
those nodes that are traversed have their children 
exchanged. (This differs from the description above in 
which all nodes on the right paths are always traversed.) 
The same theorem holds for the actual implementation, and 
the same proof works with slight modification. RH still 
increases by at most t lg(n l ) ]+l ,  and it decreases by at 
least the number of heavy edges on the meld paths. The 
original analysis holds for the light edges. [] 

Corollary 1: A sequence of m findmin, deletemin, insert, 
and meld operations takes O(~lg(ni))  time, where n i is the 
weight of the largest tree involved in the ith operation. 

Proof: The time for findmin is O(1), and insert is just a 
special case of meld. Thus to get the result we only have 
to modify the above proof'to consider deletemin. Delete- 
min simply removes the root, then does a meld. The only 
relevant effect of deleting the root is that it may decrease 
RH by one. This only improves our bound on the length of 
the meld paths, so we have the result. [] 

What follows is an implementation of the four opera- 
tions on self-adjusting heaps. The data structure is as we 
described it in the text; each node has three fields: item(x), 
left(x) and right(x). The programs are written in a variant 
of Dijkstra's guarded command language [10]; we have 
used the symbol "1" to denote Dijkstra's "box", and the 
symbol " - -"  to denote the "swap" operator. The variables 
of type heap are actually pointers to nodes. Parallel 
assignments all take place simultaneously, so the result is 
well-defined even if the same variables appear on the left 
and right sides. 

item function findmin(heap h); 
return item(h) 

end ftndmin ; 

heap function insert(item i, heap h); 
create a new node to which n points; 
left(n), right(n), item(n) := null, null, i; 
return meld(n, h) 

end insert; 

heap function deletemin(modifies heap h); 
heap i; 
i : = h ;  
h := meld(left(h), right(h)); 
return i 

end deletemin ; 

We have included two versions of meld; a recursive 
one, rmeld, and an iterative one, imeld. The function 
rxmeM is supplied to avoid doing extra tests for null in the 
recursive version. 

heap function rmeld(heap hi, h2); 
if  h2:  null - return h 1 
[ h2#null - return rxmeld(hb h2) fi 

end meld; 

heap function rxmeld(heaphb hE); 
i f  h i = n u l l  ~ return h2 fi; 
i f  item(hi) > item(hE) ~ hi--hE fi; 
left(hi), right(hi) := rxmeld(right(hl), hE), left(hO; 
return hi 

end rmeld; 

In the iterative version of meld the invariant at the 
beginning of the loop is that there are three heaps rooted at 
x, h~, and hE that contain all of the nodes. Node y is in the 
heap rooted at x, and its left child is eventually going to be 
the meld of heaps hi and hE. 

heap function imeld(heap hi, hE); 
heap x, y; 
i f  h l = n u l l  - return hE [ h2=nul l  - return hl fi; 
if item(hO > item(h2) ~ hl~-hE fi; 
x, y, hi, right(hi) := hi, hi, right(hO, left(hi); 
do h i 4: null  - 

i f  item(hO > item(hE) ~ hl--hE fi; 
y, left(y), hi, right(hO := hi, hi, right(hO, left(hO 

od; 
left(y) := hE; 
return x 

end imeld; 

Note. The swapping of hi and.hE in the loop can be avoid- 
ed by writing different pieces of code for the cases 
item(hi) > item(hE) and item(hO <- item(hE). The four-way 
parallel assignment can be written with four separate as- 
signments as: 

left(y) := hi; 
y := hi; 
hi := right(y); 
right(y) := left(y); 

With this implementation each iteration of the loop takes 
four assignments and two comparisons. 

We have tested the iterative and recursive versions of 
self-adjusting heaps (exactly as shown above) as well as the 
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iterative and recursive versions of  leftist heaps. (The itera- 
tive version we used is on page 619 of [12], and the recur- 
sive version is in [17].) Preliminary results indicate that 
recursive self-adjusting heaps and both forms of leftist 
heaps are about equally fast. However the iterative version 
of  self-adjusting heaps is significantly faster than the others. 

The leftist heap algorithms must make two passes 
over the merged path: one pass down to connect the pieces 
together, and one pass up to swap children and update the 
distance fields. The recursive version does this by saving 
the path in the recursion stack, and the iterative version 
does this by reversing pointers on the way down, and then 
fixing them on the way up. The iterative version avoids the 
overhead of recursion at the cost of  more pointer assign- 
ments. The iterative version of self-adjusting heaps is fast 
because it has no recursive calls, does no extra pointer 
manipulation, and makes only one pass over the merged 
path. These advantages make up for that fact that the 
average meld path is longer in a self-adjusting heap than in 
a leftist heap. According to Brown [8], binomial heaps are 
faster than leftist heaps. It Would be interesting to find out 
how self-adjusting heaps compare to binomial heaps. 

In some applications it is useful to have another form 
of delete: 

delete(x): Delete node x from the heap containing it, 
and return the resulting heap. 

It is impossible to implement this type of delete with the 
data structure described above. To implement delete(x) it 
is necessary to find the parent of  x so that its pointer to x 
can be changed. This means that we need  a pointer from 
each node to its parent. If  there is such a pointer then 
delete(x) can be done as follows: first do deletemin(x) 
(which removes node x from the tree rooted at x), then 
connect the resulting tree to the parent of  x. All of  the 
other operations can be modified in a straightforward 
fashion to update parent pointers. 

There is a way to allow deletion in self-adjusting 
heaps while still using only two pointers per node. In node 
x we keep a down pointer and an across pointer. If x is the 
root, then across(x) is null. If  x is an only child or a right 
child then across(x) points to the parent of  x. If x is a left 
child and x has a sibling, then across(x) points to that 
sibling. If x has no children then down(x) is null, other- 
wise down(x) points to the leftmost child of x. This 
representation might be called a "triangular heap" since a 
node and its two children are connected by a cyclic "trian- 
gle" of pointers. Knuth [11] calls this the "binary tree 
representation of  a tree, with right threads". Notice that if 
a node is an only child there is no distinction between it 
being a left child or a right child. This doesn't matter since 
the tree is heap ordered, and the algorithm can assume that 
an only child is a left child. By following at most two 
pointers from a node we can access its parent or its left or 
right child, which is all we need to implement all of the 
heap operations. 

3. Self-Adjusting Search Trees 

The data structure we call a "search tree" might more 
appropriately be called a "symmetrically ordered binary 
tree", because most of  its applications have nothing to do 
with searching. In the most general sense, a symmetrically 
ordered binary tree is a data structure that is used to 
represent a list of items. The fundamental property of  the 
list of items that is captured by the symmetrically ordered 
binary tree is the order of the items in the list. The kind of 
operations that a symmetrically ordered binary tree can 
efficiently support, are those that involve manipulation of 
nearby items in the list. In general a symmetrically ordered 
binary tree can represent the items as internal or as external 
nodes in the tree, but in the trees we discuss the items will 
be in the internal nodes. In a symmetrically ordered binary 
tree the items are arranged in symmetric order: if x is a 
node containing item i, then every item in the left subtree 
of  x comes before i in the list, and every item in the right 
subtree of x comes after i in the list. 

The basic operation that is generally used to modify 
a symmetrically ordered binary tree is the single rotation, 
because a rotation maintains the symmetric order of the 
nodes. (Case 1 of Figure 4 shows a rotation.) Rotations 
are used in AVL trees [1], trees of bounded balance [13], 
biased binary trees [6], and many others . .  Our self- 
adjusting symmetrically ordered binary trees are no excep- 
tion. (The reader may be relieved hear that, having 
dispelled any misunderstanding about what a search tree is, 
we shall proceed to call our data structure a self-adjusting 
search tree.) 

For the purposes of the discussion that follows we 
have assumed that the object to be represented is a list of 
numbers ordered by value. In a node x, there are three 
fields: item(x) (the number stored in node x), and left(x) 
and right(x) (pointers to the left and right subtrees of x). 
Every external node is null and we access and identify a 
tree with a pointer to the tree root. We shall discuss the 
following operations: 

access(i,s): If item i is in tree s return a pointer to its 
location, otherwise return null. 

insert(i,s): Insert item i into tree s, and return the 
resulting tree. 

delete(i,s): Delete item i from tree s if it is there, and 
return the resulting tree. 

join2(sl,s2): Return a tree representing the items in sl 
followed by those of  s2, destroying Sl and s2. 
(This assumes all items of sl are less than 
those of  s2.) 

join3(sl,i,s2): Return a tree representing the items in Sl 
followed by item i, followed by the items of 
s2. This destroys sl and s2. (This assumes 
that items of  s~ are less than i, and i is less 
than the items of  s2.) 
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split(i,s): Assuming  item i is in tree s, re turn a tree sl 
containing all those i tems of s less than i 
and a tree s2 containing all. those items 
greater  than i. This operat ion destroys s. 

The following operat ion is unique to self-adjusting 
search trees,  and is the one from which we build all of the 
others.  

splay(i,s): Return  a tree represent ing the same list 
represented by s. If  i is in the tree,  then it 
becomes the root. If  i is not in the tree,  
then ei ther  the immediate  successor of  i or 
the immediate  predecessor of i becomes the 
root.  This  operat ion destroys s. 

To do access(i,s) we splay(i,s); then i is in the tree 
if and only if it is at the root. To do insert(i,s) we 
splay(i,s), then break the result ing tree into two trees, one 
with i tems less than i, one with i tems greater  than i. (This 
is just  breaking  ei ther  the left or the r ight  link from the 
root . )  Then we make  these two trees the children of a new 
root with i tem i. To do join2(sl, s2) we splay(infinity,sO, 
which makes  the r ightmost  node of  sl into the root; then we 
at tach s2 as the r ight  child of t h i s  root. To do 
join3(s], i, s2) we make a node containing item i, and 
make  its left child s= and its right child s2. To do 
delete(i,s) we splay(i,s), delete the root,  and join2 the left 
and right subtrees.  To do split(i,s) we splay(i,s) and 
re turn  the left and right  subtrees of the root. (See Figure 
3.) 

insert (i,s): 
i i 

splay /o Z ~  

i i 

splay i io,nz 

splay i i 

.A A 

A 

Figure 3. How the operat ions are implemented using splay. 

To do splay(i,s) we first use the item fields to find 
the vertex that  is going to be moved to the root. We start 
with y equal  to the root  of s and repeat  the following 
search step until  y = n u l l  or item(y)=i: If  i<item(y), replace 
y by its left child; if i>item(y), replace y by its right child. 
Let  x be the last non-null  vertex reached by this process; 
this is the vertex to be moved to the root.  To fihish the 

splay we begin at node x and t raverse the path to the root ,  
performing a single rota t ion at each node.  The  rotat ions 
are  done in pairs,  in an order  that  depends on the structure 
of the tree. The following splay step is repeated until  x is 
the tree root (see Figure 4): If  x has  a parent  but  no 
grandparent ,  rotate  at p(x) ( the parent  of  x).  If  x has a 
grandparent  and x and p(x) are bo th  left or bo th  r ight  chil- 
dren,  rotate  at p(p(x)) then at p(x). If  x has  a g randparen t  
and x is a left and p(x) a r ight  child, or vice-versa,  rotate  
at p(x) and again at the new p(x). The overall  effect of  the 
splay is to move x to the root while rea r ranging  the rest  of 
the original path f rom x to the root so that  any node in tha t  
path is about  half  as far f rom the root  as it used to be. 
Figure 5 shows a series of splays on a tree that  starts out  
being a long left path.  

y x 

z y x 

z z x 

cass3:~ :::~ ~ : ~ : ~ ~  

Figure 4. A splay step start ing at node x. 
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I 4 ~ 1 0  

3 9 
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,o 

: 3 0 ~ 5  0"9 

6 

splay(6, s ) ,  . 2 / ~  

5 I0 

a 9  

Figure 5. Four  splay operat ions.  
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Splaying is reminiscent  of the path compaction 
heuristics (path halving in part icular)  used in efficient algo- 
r i thms for disjoint set union [17,18]. Al though the tech- 
niques that  Tar jan  and van Leeuwen [18] used to analyze 
path halving can be modified to apply to splaying, there is a 
simpler analysis,  which follows. 

To analyze the runn ing  t ime of a sequence of tree 
operat ions we use a credit invariant. (This is what  we 
called a token invariant or chip invariant in our previous 
work with Bent [4,5,6].) We assign to each item i an indi- 
vidual weight iw(i). These weights are real numbers  greater 
than or equal  to one, whose values we shall choose later. 
We define the total weight tw(x) of a node x to be the sum 
of the individual  weights of all descendants  of x, including 
x itself. Finally,  we define the rank of a node x to be 
r ( x ) =  [ lg( tw(x))J .  We mainta in  the following credit invari- 
ant: Any internal  node x holds r(x) credits. 

Each credit represents  the power to do a fixed 
amount  of work (e.g. rotat ions,  comparisons,  or edge 
traversals) .  Each t ime we do any work we must  pay for it 
with a credit. If  we modify the structure we may have to 
put  in credits to mainta in  the credit invariant ,  or we may be 
able to remove credits (because less are required after the 
modification than before) and use them to do work. If  we 
have a structure that  initially has C credits in it and we do 
a sequence of n operat ions where the i th one requires c(i) 
net credits (number  spent on work + number  put in the 
tree - number  taken out) ,  and the final structure has C '  
credits in it, then the runn ing  time of the sequence is at 
most  C - C ' + E c ( i ) .  The quant i ty  c(i) is called the credit 
time of the i th operat ion.  The following lemma tells us the 
credit t ime of the splay operat ion.  

L e m m a  1. Splaying a tree with root v at a node x while 
mainta in ing the credit invar iant  takes 3(r (v ) - r (x ) )+l  
credits. 

Proof.  We shall need the following rank rule: If s and t are 
siblings with equal  rank,  and their  parent  is p ,  then 
r(p) >- l+r(s).  This follows from the fact that  
tw(s) -> 2 r~s~ and tw(t) :> 2 r(t), so 
tw(p) -> t w ( s ) + t w ( t )  -> 2 rls)+l. Thus  r (p)  is at least 
r(s) + 1. 

Consider  a splay step involving the nodes x, y=p(x),  
and z = p ( p ( x ) ) ,  where p ( )  denotes  the parent  function 
before the step. Let r(  ) and r ' ( ) ,  tw( ) and tw'(  ) denote 
the rank  and total weight functions before and after the 
step, respectively. To this step we allocate 3(r ' (x) -r (x) )  
credits and one addit ional  credit if this is the last step. 
There  are three cases (see Figure 4): 

Case 1: Node z is undefined.  This is the last step of  the 
splay and the extra credit allocated to the step pays for 
the work. We have r'(x)=r(y).  Thus the number  of 
credits that  must  be added to the tree to mainta in  the 
invar iant  is r ' ( y ) - r (x )  <- r ' ( x ) - r (x ) ,  which is one third 
of  the remain ing  credits on hand.  

Case 2: Node z is defined and x and y are both left or both 
r ight  children.  We have r'(x)=r(z).  The number  of 
credits that  must  be added to the tree to mainta in  the 
invar iant  is r ' ( y ) + r ' ( z ) - r ( y ) - r ( x )  <-- 2(r ' (x ) -r (x) ) ,  
which is two thirds of the credits on hand.  If  
r'(x) > r(x), there is at least one extra credit  on hand  
to pay for the step. Otherwise,  r ' (x)=r(x)=r(y)=r(z) .  
In this case r'(z) < r(x) by the rank  rule. (The rank  
rule is applied to the tree occurring after  one rotat ion,  
with root y of rank r '(x)=r(z) ,  left subtree rooted at x 
with rank r(x), and right subtree rooted at z of rank  
r'(z).) Also r'(y) <- r(y). Thus by putt ing the credits 
f rom y onto y and putt ing all but one of the credits 
f rom x onto z we mainta in  the invar iant  and get one 
credit with which to pay for the operat ion.  

Case 3: Node z is defined a n d x  is a left a n d y  is a right 
child or vice-versa. As in Case 2, r'(x)=r(z).  In addi- 
tion we have that  tw'(y)  --< tw(y), so r'(y) <- r(y). To 
mainta in  the invar iant  on x and y we need only move 
credits from z and y. To satisfy the invar iant  on z we 
use the credits on x and need an addit ional  
r ' ( z ) - r (x )  <-r ' (x ) - r (x ) ,  which is one third of the 
credits on hand.  If r'(x) > r(x) then there is at least 
one extra credit on hand  to pay for the step. Otherwise 
r ' (x)=r(x)=r(y)=r(z) ,  and by the rank  rule ei ther 
r'(y) < r'(x) or r'(z) < r'(x) or both. We  can use the 
credit f rom the node that  decreased in rank  to pay for 
the operation.  

Summing over all steps of  a splay, we find that  the 
total  number  of credits used is at most 
3 ( r ' ( x ) - r ( x ) ) + l = 3 ( r ( v ) - r ( x ) ) + l ,  where r ' ( )  and r ( )  
denote  the rank function before and after  the ent ire  splay. ~3 

In order to complete the analysis we must  consider 
the effect of insertion,  deletion,  join2,  join3,  and split on 
the ranks  of nodes.  For the moment  let us define the indi- 
vidual weight of every item to be 1. Then  every node has a 
rank  in the range [0 , / lg  n ] ] ,  and the lemma gives a bound 
of  3 [lg n] + 1 credits for splaying. To insert  a new item i 
we first do a splay, then put the new i tem at the root. The 
number  of credits needed at the root is Jig n ] .  Joining two 
trees also requires at most [lg n] new credits at the root. 
(In both cases n is the size of the new tree.)  A three way 
join requires at most [lg nJ credits at the root. To delete, 
we do a splay, remove the root,  then do a two way join.  
This needs no extra credits beyond those used by the two 
splays because the credits on the deleted root can be placed 
on the root of the final tree. Split needs no credits beyond 
those used in the splay. 

Suppose we start with a set of  singleton trees,  do a 
series of operat ions and end up with a forest of  trees. The 
number  of credits is zero initially, and at the end it is at 
least zero. Combining  this with the above paragraph gives 
us the following theorem: 

Theo rem 2: The total t ime required for a sequence of m 
self-adjusting search tree operat ions,  start ing with singleton 
trees, is O(mlog n) ,  where n is the number  of items. 
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Our analysis of  splay allows us to get an analogous 
but more general result when the individual weights of the 
nodes are not all the same. Suppose the initial configura- 
tion consists of  a set of  separate nodes, and the number of 
credits on node i with individual weight iw(i) is 
[lg(iw(i))J. After  a sequence of  operations we reach a 
final configuration with the same set of nodes grouped into 
arbitrary trees. In this final forest of trees, the number of  
credits on node i with total weight tw(i) is / lg(tw(i))] .  
Since tw(i)>-iw(i), the number of credits in the final confi- 
guration is at least as many as in the initial configuration. 
This means that the total running time of  the sequence of  
operations is bounded by the number of credits allotted to 
the operations. Recall  that this allotment of credits to an 
operation is called the credit time of the operation. The fol- 
lowing theorem bounds the credit time of each of the basic 
operations as a function of the weights of the nodes 
involved. 

Theorem 3: 

The credit t ime of splay(x,s) is O ( l g ~ ) .  

The credit time of  split(x,s) is O ( l g ~ ) .  
tw( x ) 

The credit time of join3(sl,i,s2) is O(lg tW(Sl)+tw(s2) ). 
iw(i) 
tw(sO+tw(s2) 

The credit t ime of join2(sl,s2) is O(lg ), 
tw(x) 

where x is the rightmost node of  tree s~. 

The credit time of  insert(x,s) is 

[, tw'(s) ] where x -  is the 
0 ~lg min( tw(x-) ,  tw(x), tw(x+)) j ' 
node immediately before x in the final tree, x + is the 
one immediately after, and tw'(s) is the total weight 
of  s after the operation. 

tw(s) } 
The credit time of delete(x,s) is O lgmin( tw(x_) ,  tw(x)) ' 

where x -  is the node immediately before x in the ini- 
tial tree. 

Proof: All of these results follow by considering the credit 
times of the appropriate splay operations and combining 
these with the changes in the credits needed on various 
nodes. [] 

The remarkable thing about this result is that the 
algorithm achieves these bounds without actually having 
any information about the weights. This means that what- 
ever the running time is, it must simultaneously satisfy the 
bounds given in Theorem 3 for all weight distributions. 

The credit times for split, three-way join, insert, and 
delete given in Theorem 3 are the same as those that Bent, 
Sleator, and Tarjan give for biased trees [6]. The credit 
times for two-way joins on self-adjusting trees and biased 
trees are not comparable, because in self-adjusting trees the 
items are stored in the internal nodes and in biased trees 
they are stored in the external nodes. Self-adjusting trees 
are simpler than biased trees because no weight information 
needs to be stored or updated. The only situation in which 
biased trees may have an advantage is if worst-case per- 

operation running time is important. In locally biased 
trees, access operations have a good worst-case time bound; 
in globally biased trees, all the operations have a good 
worst-case time bound [6]. 

Another interesting consequence of Theorem 3 is that 
we can relate the behavior of a self-adjusting tree to that of 
any static tree. 

Theorem 4: Let t be the number of comparisons that occur 
in a sequence of searches f rom the root in a static binary 
search tree with n nodes. The time to do the same 
sequence of splay operations in a self-adjusting search tree 
is O(t+n2) .  

Proof: Let the root of the static tree be r. Let the depth of 
a node x in the static tree (denoted d(x)) be the distance 
from x to the root, r. (d(r)=O.)  We assign individual 
weights to the nodes as follows: For the root r, iw(r)=3 d 
(where d is the largest depth in the tree). For any other 
vertex x, iw(x)=3-d(X)iw(r). With this definition the 
deepest node has weight 1. It is easy to show by induction 
that 3iw(x) >-- tw(x) for all nodes x. (Here tw(x) denotes 
the total weight of x in the static tree.) In particular we 
have 3iw(r) >- tw(r), from which it follows that 
iw(x) >- 3-d(x)-ltw(r). Rearranging and taking logarithms 
gives us 

tw(r) 
( lg3)(d(x)+ l) -> lg iw(x) " 

The left hand side of this inequality is lg3 times the number 
of comparisons needed to search for x in the static tree. 
The right hand side is the credit t ime to splay at x in a serf 
adjusting tree with the individual weights as specified 
above. 

It remains for us to show that the number of credits 
initially in the self-adjusting tree is O(n2). It is clear that 
the total weight of any node in the self-adjusting tree is at 
most tw(r). But tw(r) ~ 3iw(r)=3 a+l ~ 3", because d, the 
largest depth in the tree, is at most n - 1 .  This means that 
the number of credits on each node is at most (lg3)n, so the 
total number of credits in the tree initially is at most 
(lg3)n 2. [] 

A corollary of  this result is that the running time of a 
self-adjusting tree is within a constant factor of the running 
time of the optimal static tree for any particular distribu- 
tion. The surprising thing about this is that the self- 
adjusting tree behaves this way without knowing anything 
about the distribution in advance. (Note however that the 
self-adjusting tree takes some time to "learn" the distribu- 
tion. This learning time is embodied in the O(n 2) over- 
head .) 

There is another interesting result concerning the 
running time of sequences of  splays. It follows from the 
alternate analysis of splay (involving ideas from path 
compression), and we do not prove it here. 

Theorem $ (log(At) theorem): The credit t ime of a splay 
of  node x is O ( l o g ( l + A t ) ) ,  where At is the number of 
splays done between the current splay of x and the previous 
splay of x. 
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4. Implementat ion  o f  Sel f -Adjust ing Trees 

There are several slightly different formulations of 
the splay operation that all have the desirable properties 
discussed in Section 3. The method of  Section 3 is easy to 
describe, but results in a fairly complicated program. In 

• this section we present programs for two splay algorithms: a 
top-down method, and a bottom-up method. 

In the first formulation the information stored in 
each node is the same as that described in Section 3: each 
node has left, right and item fields. The difference is that 
here the splay operation rearranges the tree on the way 
down, instead of searching down and rearranging the tree 
on the way up. (We do not present programs for the other 
operations, because they are easy to write given splay.) 

global  tree dummy; 
dummy := create tree node; 

tree function splay(item i, tree s); 
string state; 
tree l, r, lp, rp ; 
i f  s = n u l l  ~ return null  fi; 
le f t (dummy) := null; right(dummy) := null; 
state := "N"; l := r := dummy; 
do s#:nul l  and i > item (s)  - 

if state#"L" - right(l) := s; lp := 1; state := "L" 
[ s ta t e="L  '' ~ right(l) := left(s); right(lp) "= s; 

left(s) := 1; state := "N" 
fi; 
l :=  s; s := right(s) 

[ s # n u l l  and i < i tem(s) 
i f  state ~ "R " ~ left(r) :=  s; rp := r; state :=  "R" 
[ s ta te="R"  - left(r) :=  right(s); left(rp) :=  s; 

right(s) :=  r; state := "N" 
fi; 
r := s; s := left(s); 

od; 
i f  s:/:null ~ right(l) := left(s); left(r) := right(s) 
I s = null  - 

i f  r = d u m m y  - s := I; right(lp) :=  left(l) 
[ r # d u m m y  - s :=  r; left(rp) :=  right(r) fi 

fi; 
left(s) :=  right(dummy); right(s) :=  left(dummy); 
return s 

end splay; 

Variables of type tree are pointers to nodes in the 
tree. Initially s (assumed to be non-null) points to the root 
of  the tree, and the "left" tree and "right" trees are empty. 
(The right and left fields of  the dummy node point to the 
roots of the left and right tree respectively. The dummy 
node obviates special purpose code for the case when the 
left or the right tree is null.) Splay walks down the tree 
building up the left tree from all those subtrees to the left 
of  i and building the right tree from all those subtrees to 
the right of  i. (The variables 1 and r and lp and rp point to 
the places in the left and right trees where the building 
takes place.) When it reaches either null or the item it was 
looking for, it stops and puts the left tree, the node it was 

looking for, and the right tree together and returns the 
result. The three-value variable state is used to alter the 
way in which a tree is added to the left tree or the right 
tree. This variable is what enables this version of  splay to 
achieve the time bounds of Section 3. 

In many potential uses of  self-adjusting trees the pro- 
cess of searching for an item is unnecessary. In these cases 
we already have a pointer to the node we are interested in, 
and we want to find out something about the relationship 
between it and the rest of  the nodes. (An example of this 
is in the data structure for dynamic trees, in which we want 
to find out the minimum cost node of all those to the left of 
a particular node.) In these applications the item field is 
useless, but in its place we need a parent  pointer. With a 
parent pointer we can find our way to the root of a tree 
given only a pointer to some node in it. If  desired we can 
avoid using extra parent pointers by using the "triangular" 
representation method at the end of Section 2. 

The following is a bottom-up implementation of  splay 
that uses parent pointers. The input to splay is a pointer to 
a node. Splay makes that node into the root of the tree. 
The parent of  the root is null. 

tree function rotateleft(tree a); 
tree b; 
b :=  right(a); 
right(a),  parent( lef t (b))  := left(b),  a; 
left(b),  parent(a)  :=  a,  b; 
return b 

end rotateleft; 

tree function rotateright(tree a);  [analogous to rotateleft] 

procedure  splay(tree x); 
string state; 
tree l, r, y ,  z; 
state = "N"; 
1, r,  z :=  left(x),  r ight(x) ,  x; 
y := parent(x);  
do y ~ null  

if  r igh t (y )=z  
right(y),  parent(I)  := l, y; 
z, 1, y :=  y ,  y ,  parent(y);  
i f  s t a t e ~ " L "  ~ state := "L" 
[ s ta te="L"  ~ l := rotateleft(l); 

state := "N" fi 
I l e f t ( y )=z  - 

left(y),  parent(r)  :=  r, y; 
z, r, y :=  y ,  y ,  parent(y);  
i f  s ta te~  "R" ~ state := "R" 
[ s ta te="R"  ~ r := rotateright(r); 

state :=  "N" fi 
fi 

od; 
left(x),  parent(l)  := I, x; 
right(x),  parent(r)  := r,  x; 
parent(x)  := null 

end splay; 
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The function rotateleft does a left rotation of a node 
(a) and its right child (b). It returns the new parent (b). 
In the case that the left child of b is null, an assignment to 
the parent of null takes place. Allowing this simplifies the 
code, and only costs one extra node. 

This implementation of splay is analogous to the first 
one, except that the traversal is bottom-up instead of top- 
down. The variables l and r point to the current left and 
right trees. The variable state is used as before to guide 
the rotations. The advantage of this bottom-up method 
over the one described in Section 3 is that there are fewer 
pointer updates. 

Split, join and insert can be implemented essentially 
as described in Section 3. The operation delete(x) can be 
implemented with only one call to splay. First the children 
of x are joined together, then the resulting tree is placed 
where x was in the oritinal tree. (We needn't traverse the 
path from x to the root, nor splay along that path.) 

5. Additional Results 

Our results on self-adjusting binary trees raise a 
number of general and specific questions about self- 
adjusting data structures, and we are continuing our work 
in this area. Below we mention one major application and 
several variants of self-adjusting search trees and heaps. 

Self-adjusting search trees can be used in place of 
biased trees in the dynamic tree structure of Sleator and 
Tarjan [15,16,17]. The result is a considerable simplifica- 
tion of that structure. Details may be found in [17], and 
will appear in the full version of this paper. 

There is another version of splay that might be called 
"move half way to the root". In this  version the splayed 
node does not move all the way to the root, but its distance 
to the root is halved. The only difference between it and 
the bottom-up version is that in case 2 (see Figure 4) only 
the first rotation is done. The theorems of Section 3 apply 
to this version of splay. The reason it is not as useful as 
the move to root versions is that the join and split opera- 
tions have to be implemented separately, rather than fol- 
lowing automatically from splay. 

It is possible to implement self-adjusting search trees 
with all of the items stored in the external nodes. Splay 
then moves a specified external node to Within two steps of 
the root. The algorithm to do this is a simple modification 
of the algorithm to do bottom-up splay given in Section 4. 
One advantage of this is that the actual time to join two 
trees is constant, although the credit time is O(Iog n). 

Another alternative implementation of splay is one in 
which the ranks are actually kept in the nodes. Rotations 
are only done in the splay when the rank of a node is equal 
to the rank of its grandparent (using the splay of Section 
3). With this implementation the number of credits in the 
tree decreases by at least one with each rotation. This 
means that if we do a series of searches the number of rota- 
tions is bounded by the number of credits initially in the 
tree. Although this version does far fewer rotations, it 
lacks much of the beauty of the other forms of self- 

adjusting search trees. Weights must be specified in 
advance and kept in the nodes, and a different version of 
splay must be used for the split and join operations. 

There are also other versions of self-adjusting heaps 
that deserve mention. We can build a heap directly out of 
a self-adjusting search tree by making each node of the 
search tree correspond to one of the keys in the heap. (The 
keys can be stored in any an arbitrary order.) In each node 
of the self-adjusting search tree we store two fields, a key 
field and a minkey field. The key field is just the key 
represented by that node. The minkey field contains the 
minimum key in the subtree rooted there. To do a delete- 
min we first find the node with the minimum key by walk- 
ing down the tree from the root always taking the Child that 
has the minimum minkey field, until we get to the node 
whose key is the minkey of the root. We then use our self- 
adjusting search tree routine to delete this node from the 
tree. (The routines can easily be modified to maintain the 
minkey field.) The advantage of this form of heap is that 
the keys can also be maintained in total order that is 
independent of the heap order of the keys. (Splitting and 
joining of these heaps based on the symmetric order of the 
nodes is possible.) 

We can use a similar method to represent a heap by 
a self-adjusting search tree with all of the keys stored in the 
external nodes. In this version each external node has a key 
field, and each internal node has a minkey field. The 
advantage of this scheme is that we can meld two heaps (by 
joining the self-adjusting trees) in constant actual time, as 
mentioned earlier in this section. 

We conjecture that under a suitable measure of com- 
plexity, self-adjusting trees perform within a constant factor 
of any binary search tree scheme, on any sequence of 
operations. We have formulated a rigorous version of this 
conjecture and are attempting to prove it. Details will 
appear in the full paper. 
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